98 research outputs found

    Use of a Linear Paul Trap to Study Random Noise-Induced Beam Degradation in High-Intensity Accelerators

    Get PDF
    A random noise-induced beam degradation that can affect intense beam transport over long propagation distances has been experimentally studied by making use of the transverse beam dynamics equivalence between an alternating-gradient (AG) focusing system and a linear Paul trap system. For the present studies, machine imperfections in the quadrupole focusing lattice are considered, which are emulated by adding small random noise on the voltage waveform of the quadrupole electrodes in the Paul trap. It is observed that externally driven noise continuously produces a nonthermal tail of trapped ions, and increases the transverse emittance almost linearly with the duration of the noise.close4

    Ion injection optimization for a linear Paul trap to study intense beam propagation

    Get PDF
    The Paul Trap Simulator Experiment (PTSX) is a linear Paul trap whose purpose is to simulate the nonlinear transverse dynamics of intense charged particle beam propagation in periodic-focusing quadrupole magnetic transport systems. Externally created cesium ions are injected and trapped in the long central electrodes of the PTSX device. In order to have well-matched one-component plasma equilibria for various beam physics experiments, it is important to optimize the ion injection. From the experimental studies reported in this paper, it is found that the injection process can be optimized by minimizing the beam mismatch between the source and the focusing lattice, and by minimizing the number of particles present in the vicinity of the injection electrodes when the injection electrodes are switched from the fully oscillating voltage waveform to their static trapping voltageclose8

    Alternative optical concept for electron cyclotron emission imaging

    Get PDF
    The implementation of advanced electron cyclotron emission imaging (ECEI) systems on tokamak experiments has revolutionized the diagnosis of magnetohydrodynamic (MHD) activities and improved our understanding of instabilities, which lead to disruptions. It is therefore desirable to have an ECEI system on the ITER tokamak. However, the large size of optical components in presently used ECEI systems have, up to now, precluded the implementation of an ECEI system on ITER. This paper describes a new optical ECEI concept that employs a single spherical mirror as the only optical component and exploits the astigmatism of such a mirror to produce an image with one-dimensional spatial resolution on the detector. Since this alternative approach would only require a thin slit as the viewing port to the plasma, it would make the implementation of an ECEI system on ITER feasible. The results obtained from proof-of-principle experiments with a 125 GHz microwave system are presented.open0

    Experimental simulations of beam propagation over large distances in a compact linear Paul trap

    Get PDF
    The Paul Trap Simulator Experiment (PTSX) is a compact laboratory experiment that places the physicist in the frame of reference of a long, charged-particle bunch coasting through a kilometers-long magnetic alternating-gradient (AG) transport system. The transverse dynamics of particles in both systems are described by similar equations, including nonlinear space-charge effects. The time-dependent voltages applied to the PTSX quadrupole electrodes are equivalent to the axially oscillating magnetic fields applied in the AG system. Experiments concerning the quiescent propagation of intense beams over large distances can then be performed in a compact and flexible facility. An understanding and characterization of the conditions required for quiescent beam transport, minimum halo particle generation, and precise beam compression and manipulation techniques, are essential, as accelerators and transport systems demand that ever-increasing amounts of space charge be transported. Application areas include ion-beam-driven high energy density physics, high energy and nuclear physics accelerator systems, etc. One-component cesium plasmas have been trapped in PTSX that correspond to normalized beam intensities, s=omega(2)(p)(0)/2 omega(2)(q), up to 80% of the space-charge limit where self-electric forces balance the applied focusing force. Here, omega(p)(0)=[n(b)(0)e(b)(2)/m(b)epsilon(0)](1/2) is the on-axis plasma frequency, and omega(q) is the smooth-focusing frequency associated with the applied focusing field. Plasmas in PTSX with values of s that are 20% of the limit have been trapped for times corresponding to equivalent beam propagation over 10 km. Results are presented for experiments in which the amplitude of the quadrupole focusing lattice is modified as a function of time. It is found that instantaneous changes in lattice amplitude can be detrimental to transverse confinement of the charge bunch. (c) 2006 American Institute of Physics.close6

    Transverse beam compression on the Paul trap simulator experiment

    Get PDF
    The Paul trap simulator experiment is a compact laboratory Paul trap that simulates a long, thin charged-particle bunch coasting through a kilometers-long magnetic alternating-gradient (AG) transport system by putting the physicist in the beam's frame of reference. The transverse dynamics of particles in both systems are described by similar equations, including all nonlinear space-charge effects. The time-dependent quadrupolar electric fields created by the confinement electrodes of a linear Paul trap correspond to the axially dependent magnetic fields applied in the AG system. Results are presented for experiments in which the lattice period and strength are changed over the course of the experiment to transversely compress a beam with an initial depressed tune of 0.9. Instantaneous and smooth changes are considered. Emphasis is placed on determining the conditions that minimize the emittance growth and the number of halo particles produced by the beam compression process. Both the results of particle-in-cell simulations performed with the warp code and envelope equation solutions agree well with the experimental dataclose9

    Studies of emittance growth and halo particle production in intense charged particle beams using the Paul Trap Simulator Experiment

    Get PDF
    The Paul Trap Simulator Experiment (PTSX) is a compact laboratory experiment that places the physicist in the frame-of-reference of a long, charged-particle bunch coasting through a kilometers-long magnetic alternating-gradient (AG) transport system. The transverse dynamics of particles in both systems are described by the same set of equations, including nonlinear space-charge effects. The time-dependent voltages applied to the PTSX quadrupole electrodes in the laboratory frame are equivalent to the spatially periodic magnetic fields applied in the AG system. The transverse emittance of the charge bunch, which is a measure of the area in the transverse phase space that the beam distribution occupies, is an important metric of beam quality. Maintaining low emittance is an important goal when defining AG system tolerances and when designing AG systems to perform beam manipulations such as transverse beam compression. Results are reviewed from experiments in which white noise and colored noise of various amplitudes and durations have been applied to the PTSX electrodes. This noise is observed to drive continuous emittance growth and increase in root-mean-square beam radius over hundreds of lattice periods. Additional results are reviewed from experiments that determine the conditions necessary to adiabatically reduce the charge bunch's transverse size and simultaneously maintain high beam quality. During adiabatic transitions, there is no change in the transverse emittance. The transverse compression can be achieved either by a gradual change in the PTSX voltage waveform amplitude or frequency. Results are presented from experiments in which low emittance is achieved by using focusing-off-defocusing-off waveforms. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3354109close4

    Experiments on transverse compression of a long charge bunch in a linear Paul trap

    Get PDF
    The transverse compression of a long charge bunch is investigated in the Paul trap simulator experiment ( PTSX), which is a linear Paul trap that simulates the nonlinear transverse dynamics of an intense charged particle beam propagating through an equivalent kilometers- long magnetic alternating- gradient ( AG) focusing system. Changing the voltage amplitude at fixed focusing frequency in the PTSX device corresponds to changing the field gradient of the quadrupole magnets with fixed axial periodicity in the AG transport system. In this work, we present experimental results on transverse compression of the charge bunch in which the amplitude of the applied oscillatory focusing voltage is changed instantaneously, and adiabatically. The experimental data are also compared with analytical estimates and 2D WARP particle- in- cell simulationsclose6

    Experimental investigation of random noise-induced beam degradation in high-intensity accelerators using a linear Paul trap

    Get PDF
    A random noise-induced beam degradation that could affect intense beam transport over long propagation distances has been experimentally investigated by making use of the transverse beam dynamics equivalence between an alternating-gradient focusing system and a linear Paul trap system. For the present study, machine imperfections in the quadrupole focusing lattice are considered, which are emulated by adding small random noise on the voltage waveform of the quadrupole electrodes in the Paul trap. It is observed that externally driven noise continuously increases the rms radius, transverse emittance, and nonthermal tail of the trapped charge bunch almost linearly with the duration of the noise. The combined effects of collective modes and colored noise are also investigated and compared with numerical simulationsclose3

    Status and Plans for the National Spherical Torus Experimental Research Facility

    Full text link
    • โ€ฆ
    corecore